HSIC-K Interlock Switches with Solenoid and Hostage Key

Operator's safety inside the hazardous area is ensured with the portable key. Hostage control for large system or machine applications is achieved.

- The door and key are locked during machine operation.
- The door is unlocked by removing the key, and the interruption of load circuit and control circuit are maintained.
- Ideal as a portable key for bringing into the hazardous area.
- 10 different numbers are available for key, so that neighboring switches cannot be operated by the same key.
- Flexible installation: The actuator can be inserted into two directions.
- IP67 rated rugged die-cast aluminum housing.

Interlock Switch

Contact Configuration	Solenoid Unit Location	Part No.
Main Circuit: 1NC+1NC Auxiliary Circuit: 1NC+1NC		

- The contact configurations show the contact status when the actuator is inserted and locked
- The HS9Z-T1 special key wrench for removing the cover and manual unlocking is supplied with the interlock switch.
- Specify an indicator color in place of (2) in the Part No. G: green, R: red
- Specify a key number in place of \square.
- Actuators are not supplied with the interlock switch, and must be ordered separately.
Actuators/Key Wrench/Screwdriver for TORX Screws

Description	Part No.
Straight Actuator	HS9Z-A1
Right-angle Actuator	HS9Z-A2
Angle Adjustable Actuator (mainly for hinged doors)	HS9Z-A3
Special Key Wrench for TORX	HS9Z-T1

Part No. Development

Contact Ratings

Rated Insulation Voltage (Ui)				300 V (between LED or solenoid and ground: 60V)		
Rated Thermal Current (Ith)				Main circuit: 10A Auxiliary circuit: 3A		
Rated Voltage (Ue)				30V	125 V	250V
Rated Current (le) (Note)	Main Circuit	AC	Resistive load (AC-12)	10A	10A	6A
			Inductive Load (AC-15)	10A	5A	3A
		DC	Resistive load (DC-12)	6A	-	-
			Inductive Load (DC-13)	3A	0.9A	-
	Auxiliary Circuit	AC	Resistive load (AC-12)	-	3A	3A
			Inductive Load (AC-15)	-	-	3A
		DC	Resistive load (DC-12)	3A	-	-
			Inductive Load (DC-13)	-	0.9A	-

- Minimum applicable load (reference value): 3V AC/DC, 5 mA Note: Ratings approved by safety agencies: A300: AC-15 3A/250V

Solenoid Unit

Rated Voltage	24 V DC $(100 \%$ duty cycle $)$
Rated Current	305 mA
Coil Resistance	$79 \Omega\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
Pickup Voltage	Rated voltage $\times 85 \%$ maximum $\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
Dropout Voltage	Rated voltage $\times 10 \%$ minimum $\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
Maximum Continuous Applicable Voltage	Rated voltage $\times 110 \%$
Maximum Continuous Applicable Time	Continuous
Insulation Class	Class B

Indicator

Rated Voltage	24 V DC
Rated Current	10 mA
Light Source	LED
Light Color	G (green), R (red)

[^0]
Specifications

Applicable Standards	ISO14119 EN1088 IEC60947-5-1 EN60947-5-1 (TÜV approved) GS-ET-19 (TÜV approved) UL508 (UL listed) CSA C22.2 No. 14 (c-UL listed) GB14048.5 (CCC approved)
	IEC 60204-1/EN 60204-1 (applicable standards for use)
Operating Temperature	-20 to $40^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Impulse Withstand Voltage	4 kV (between LED, solenoid and ground: 2.5 kV)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between live metal part and ground: $100 \mathrm{M} \Omega$ minimum Between live metal parts: $\quad 100 \mathrm{M} \Omega$ minimum Between terminals of the same pole: $100 \mathrm{M} \Omega$ minimum
Electric Shock Protection	Class I (IEC 61140)
Degree of Protection	IP67 (IEC 60529)
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operating extremes: 10 to 55 Hz , amplitude 0.5 mm minimum Damage limits: 30 Hz , amplitude 1.5 mm minimum
Actuator Operating Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel	11 mm minimum
Direct Opening Force	20N minimum
Actuator Retention Force	1500N minimum (GS-ET-19)
Operating Frequency	900 operations per hour
Mechanical Life	1,000,000 operations minimum (GS-ET-19)
Electrical Life	100,000 operations minimum (operating frequency 900 operations per hour, load AC-12, 250V, 6A) 1,000,000 operations minimum (operating frequency 900 operations per hour, load 24V AC/DC, 100mA)
Conditional Short-circuit Current	100A (250V) (Use 250V/10A fast-blow fuse for short-circuit protection.)
Weight (approx.)	660g

Dimensions

HS1C-K when using the Straight Actuator (HS9Z-A1)
(Horizontal Mounting)

HS1C-K when using the Right-angle Actuator (HS9Z-A2)
(Vertical Mounting)

* Actuator center position

Note: Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.

- Use four mounting screws to moun the interlock switch according to the mounting hole layout

Actuator Dimensions

Straight Actuator HS9Z-A1
Right-angle Actuator HS9Z-A2
Angle-adjustable Actuator HS9Z-A3

Note: The actuator cover and actuator stop films are supplied with the actuator and used when adjusting the actuator position. Remove the actuator cover and actuator stop film after the actuator position is determined.

Circuit Diagrams and Operating Characteristics

	Status 1	Status 2	Status 3	Status 4	Status 5	Status 6
Interlock Switch Status	- Door closed - Key is installed - Solenoid de-energized	- Door closed - Key is installed - Solenoid energized	- Door closed - Key is removed - Solenoid energized	- Door open - Key is removed - Solenoid energized	- Door open - Key is removed - Solenoid de-energized	- Door closed - Key is removed - Solenoid de-energized
Door						
Circuit Diagram			Contact block 2 is OFF with energized solenoid $\begin{gathered} 0 \\ \longrightarrow \Theta \end{gathered}$	Contact block 2 is OFF with energized solenoid		
Main Circuit	3-4: Closed	3-4: Open				
Monitor Circuit	1-2: Closed	1-2: Open				
Solenoid Power	5-6: Power OFF	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF	5-6: Power OFF
Remarks	- Door locked - Key is retained (does not turn) - Machine can operate	- Door locked - Key can be removed by turning - Machine cannot operate	- Door can be opened by hand - Machine cannot operate	- Machine cannot operate	- Machine cannot operate	- Door can be opened by hand - Machine cannot operate

- Main circuit: Connected to the machine drive control circuit, sending interlock signals to the protective door.
- Monitor circuit: Sends ON/OFF signals of the main circuit and monitoring signals of open/closed status of the protective door.

Safety Precautions

- In order to avoid electric shock or fire, turn power off before installation, removal, wire connection, maintenance, or inspection of the interlock switch.
- If relays are used in the circuit between the interlock switch and the load, consider the danger and use safety relays, since welded or sticking contacts of standard relays may invalidate the functions of the interlock switch. Perform risk assessment and establish a safety circuit which satisfies the requirement of the safety
category.
- Do not place a PLC in the circuit between the interlock switch and the load. Safety security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the interlock switch, otherwise a malfunction or an accident may occur.
- Do not install the actuator in the location where the human body may come into contact. Otherwise injury may occur

Instructions

- Regardless of door types, do not use the interlock switch as a door stop. Install a mechanical door stop at the end of the door to protect the interlock switch against excessive force.
- Do not apply excessive force to the locked key. Applying force to the key may interfere with solenoid operation, resulting in a failure to unlock. Also, applying a torque larger than $1.8 \mathrm{~N} \cdot \mathrm{~m}$ to the key results in damage.
- Regardless of the door status, the key is locked when the key is operated while the solenoid is de-energized.
- Do not apply excessive shock to the interlock switch when opening or closing the door. A shock to the interlock switch exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may cause damage to the interlock switch.
- When wiring, unscrew the cover with part number label only. Unnecessary loosening of other screws may cause a malfunction of the interlock switch.
- Prevent foreign objects such as dust and liquids from entering the interlock switch while connecting a conduit or wiring.
- Actuator retention force is 1500 N (static load). When larger force is expected, add a system using interlock switch without lock (ex. HS1B) and sensor in order to detect door opening and to stop the machine.
- If the operating atmosphere is contaminated, use a protective
cover to prevent the entry of foreign objects into the interlock switch through the actuator entry slots.
- Entry of a considerable amount of foreign objects into the interlock switch may affect the mechanism of the interlock switch and cause a malfunction.
- Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.
- Do not store the interlock switches in a dusty, humid, or organicgas atmosphere.
- Use dedicated actuators only. When other actuators are used, the interlock switch may be damaged.
- Do not modify the actuator, otherwise it will damage the interlock switch.
- The cover uses special screws which cannot be removed or tightened by general drivers. Use the special wrench supplied with the interlock switch.
- Regardless of door types, do not use the interlock switch as a door lock. Install a separate lock using a latch or other measures.
- The solenoid has polarity. Make sure of the correct polarity when wiring. Do not apply overvoltage, otherwise the solenoid will be burnt.

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9Z-A3).
Note: Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A2 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

HS9Z-A3 Actuator

- When the door hinge is on the extension line of the interlock switch surface: 50 mm
- When the door hinge is on the extension line of the actuator mounting surface: 80 mm

Actuator Angle Adjustment

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing). Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening.
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- Recommended tightening torque of angle adjustment screw: $0.8 \mathrm{~N} \cdot \mathrm{~m}$
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not loosen.

Mounting Examples

- Mount the interlock switch on a fixed machine or guard, and mount the actuator on the hinged door. Do not mount both interlock switch and actuator on the hinged doors, otherwise malfunction will occur.

Manual Unlocking

The HS1C-K allows manual unlocking of the actuator to precheck proper entry of the actuator into the slot as well as for emergency use such as a power failure.

- Remove the screw located on the front of the interlock switch using the special wrench supplied with the interlock switch. Insert a small screwdriver into the screw hole and push the lever inside of the interlock switch away from the key until the key is unlocked (see the figure below).
- Turn the key to unlock the actuator.

Note: Before manually unlocking the interlock switch, make sure that the machine has come to a complete stop. Manual unlocking during operation may unlock the interlock switch before the machine stops, and the function of interlock switch with solenoid is lost. After unlocking, ensure to install the screw.

Applicable Crimping Terminal

- See page 112.

Applicable Wire Size

- Terminal Nos. 1, 2, 5, 6, 7, 8: 0.5 to $0.75 \mathrm{~mm}^{2}$
- Terminal Nos. 3, 4, E: $\quad 1.0$ to $1.25 \mathrm{~mm}^{2}$

Applicable Cable Glands

- Use IP67 cable gland.

When Using Flexible Conduits (Example)

- Flexible conduit example: VF-03 (Nihon Flex)
- Metal gland example:
(G1/2) RLC-103 (Nihon Flex)
When Using Multi-core Cables (Example)
- Plastic cable gland:
(G1/2) SCS-10* (Seiwa Electric)
- Metal cable gland: (G1/2) ALS-16 (Nihon Flex)
- Different cable glands are used depending on the cable sheath outside diameter. When purchasing a cable gland, confirm that the cable gland is applicable to the cable sheath outside diameter.

Recommended Tightening Torque of Mounting

Screws

- Interlock switch: 4.5 to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (four M5 screws)
- Terminal screws for terminal No. 1 to 6: 0.4 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ (M3)
- Terminal screws for terminal No. 7 and 8: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$ (M3.5)
- Actuator (HS9Z-A1/A2/A3): 4.5 to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M6 screws)
- Mounting bolts must be provided by users.
- The above recommended tightening torques of the mounting screws are the values confirmed with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not come loose after mounting.
- To avoid unauthorized or unintended removal of the interlock switch and the actuator, it is recommended that the interlock switch and the actuator are installed in an unremovable manner, for example using special screws, rivets, or welding the screws.

Instructions

Cable Lead-in Length and Wiring
Examples

	Terminal No.	Conduit Port	
		(1)	(2)
Cable Length L1 (mm)	1	30 ± 2	45 ± 2
	2	30 ± 2	50 ± 2
	3	25 ± 2	55 ± 2
	4	25 ± 2	60 ± 2
	5	30 ± 2	65 ± 2
	6	30 ± 2	70 ± 2
	7	65 ± 2	35 ± 2
	8	65 ± 2	110 ± 2
	E	85 ± 2	45 ± 2
Wire Stripping Length L2 (mm)		7 ± 1	

Note: Wire the interlock switches according to the following examples.

Note: When wiring the ground (E) terminal, connect in the solid line direction only. Do not connect in the dotted line direction.

[^0]: - The lens cannot be replaced

